ⓘ Gorman polar form is a functional form for indirect utility functions in economics. Imposing this form on utility allows the researcher to treat a society of ut ..


ⓘ Gorman polar form

Gorman polar form is a functional form for indirect utility functions in economics. Imposing this form on utility allows the researcher to treat a society of utility-maximizers as if it consisted of a single representative individual. Gorman showed that having the function take Gorman polar form is both necessary and sufficient for this condition to hold.


1. Motivation

Standard consumer theory is developed for a single consumer. The consumer has a utility function, from which his demand curves can be calculated. Then, it is possible to predict the behavior of the consumer in certain conditions, price or income changes. But in reality, there are many different consumers, each with his own utility function and demand curve. How can we use consumer theory to predict the behavior of an entire society? One option is to represent an entire society as a single "mega consumer", which has an aggregate utility function and aggregate demand curve. But in what cases is it indeed possible to represent an entire society as a single consumer?

Formally: consider an economy with n {\displaystyle n} consumers, each of whom has a demand function that depends on his income m i {\displaystyle m^{i}} and the price system:

x i p, m i {\displaystyle x^{i}p,m^{i}}

The aggregate demand of society is, in general, a function of the price system and the entire distribution of incomes:

X = ∑ i = 1 n x i p, m i {\displaystyle Xp,m^{1},\dots,m^{n}=\sum _{i=1}^{n}{x^{i}p,m^{i}}}

To represent the entire society as a single consumer, the aggregate demand must be a function of only the prices and the total income, regardless of its distribution:

X = X p, ∑ i = 1 n m i {\displaystyle Xp,m^{1},\dots,m^{n}=Xp,\sum _{i=1}^{n}{m^{i}}}

Under what conditions is it possible to represent the aggregate demand in this way?

Early results by Antonelli 1886 and Nataf 1953 had shown that, assuming all individuals face the same prices in a market, their income consumption curves and their Engel curves expenditure as a function of income should be parallel straight lines. This means that we can calculate an income-consumption curve of an entire society just by summing the curves of the consumers. In other words, suppose the entire society is given a certain income. This income is somehow distributed between the members of society, then each member selects his consumption according to his income-consumption curve. If the curves are all parallel straight lines, the aggregate demand of society will be independent of the distribution of income among the agents.


2. Gormans form of the expenditure function

Gormans first published paper in 1953 developed these ideas in order to answer the question of representing a society by a single individual. In 1961, Gorman published a short, four-page paper in Metroeconomica which derived an explicit expression for the functional form of preferences which give rise to linear Engel curves. The expenditure function of each consumer i {\displaystyle i} the amount of money required to reach a certain utility level in a certain price system must be linear in utility:

e i p, u i = f i p + g p ⋅ u i {\displaystyle e^{i}\leftp,u^{i}\right=f^{i}p+gp\cdot u^{i}},

where both f i p {\displaystyle f^{i}\leftp\right} and g p {\displaystyle g\leftp\right} are homogeneous of degree one in prices p {\displaystyle p}, a vector. This homogeneity condition ensures that e i p, u {\displaystyle e^{i}\leftp,u\right} gives linear Engel curves.

f i p {\displaystyle f^{i}\leftp\right} and g p {\displaystyle g\leftp\right} have nice interpretations: f i p {\displaystyle f^{i}\leftp\right} is the expenditure needed to reach a reference utility level of zero for each individual i {\displaystyle i}, while g p {\displaystyle g\leftp\right} is the price index which deflates the excess money income e i p, u − f i p {\displaystyle e^{i}\leftp,u\right-f^{i}p} needed to attain a level of utility u ¯ {\displaystyle {\bar {u}}}. It is important to note that g p {\displaystyle g\leftp\right} is the same for every individual in a society, so the Engel curves for all consumers are parallel.


3. Gormans form of the indirect utility function

Inverting this formula gives the indirect utility function utility as a function of price and income:

v i p, m i = m i − f i p g p {\displaystyle v^{i}\leftp,m^{i}\right={\frac {m^{i}-f^{i}p}{gp}}},

where m {\displaystyle m} is the amount of income available to the individual and is equivalent to the expenditure e i p, u i {\displaystyle e^{i}\leftp,u^{i}\right}) in the previous equation. This is what Gorman called" the polar form of the underlying utility function.” Gormans use of the term polar was in reference to the idea that the indirect utility function can be seen as using polar rather than Cartesian as in direct utility functions coordinates to describe the indifference curve. Here, income m i {\displaystyle m^{i}} is analogous to the radius and prices p {\displaystyle p} to an angle.


4.1. Examples Quasilinear utilities

When the utility function of agent i {\displaystyle i} has the form:

u i x, m = u i x + m {\displaystyle u_{i}x,m=u_{i}x+m}

the indirect utility function has assuming an interior solution the form:

v i p, m = v i p + m {\displaystyle v_{i}p,m=v_{i}p+m}

which is a special case of the Gorman form.

Indeed, the marshallian demand function for the nonlinear good of consumers with quasilinear utilities does not depend on the income at all in this quasilinear case, the demand for the linear good is linear in income:

x i p, m = − d v p / d m) / v p / d p i) = − 1 / d v p / d p i) = v i ′ − 1 p = v i ′ p − 1 {\displaystyle x_{i}p,m=-dvp/dm)/vp/dp_{i})=-1/dvp/dp_{i})=v_{i}^{-1}p=v_{i}p^{-1}}

Hence, the aggregate demand function for the nonlinear good also does not depend on income:

X p, M = ∑ i = 1 n v i ′ − 1 p {\displaystyle Xp,M=\sum _{i=1}^{n}{v_{i}^{-1}p}}

The entire society can be represented by a single representative agent with quasilinear utility function:

U x, m = U x + m {\displaystyle Ux,m=Ux+m}

where the function U {\displaystyle U} satisfies the equality:

U ′ − 1 p = ∑ i = 1 n v i ′ − 1 p {\displaystyle U^{-1}p=\sum _{i=1}^{n}{v_{i}^{-1}p}}

In the special case in which all agents have the same utility function u x, m = u x + m {\displaystyle ux,m=ux+m}, the aggregate utility function is:

U x, M = n ⋅ u x n + M {\displaystyle Ux,M=n\cdot u{x \over n}+M}


4.2. Examples Homothetic preferences

The indirect utility function has the form:

v p, m i = v p ⋅ m {\displaystyle vp,m_{i}=vp\cdot m}

which is also a special case of the Gorman form.

Particularly: linear, Leontief and Cobb-Douglas utilities are homothetic and thus have the Gorman form.


5. Proof of linearity and equality of slope of Engel curves

To prove that the Engel curves of a function in Gorman polar form are linear, apply Roys identity to the indirect utility function to get a Marshallian demand function for an individual i {\displaystyle i} and a good n {\displaystyle n}:

x n i p, m i = − ∂ v i p, m i ∂ p n ∂ v i p, m i ∂ m i = ∂ f i p ∂ p n + ∂ g p ∂ p n ⋅ m − f i p g p {\displaystyle x_{n}^{i}p,m^{i}=-{\frac {\frac {\partial v^{i}p,m^{i}}{\partial p_{n}}}{\frac {\partial v^{i}p,m^{i}}{\partial m^{i}}}}={\frac {\partial f^{i}p}{\partial p_{n}}}+{\frac {\partial gp}{\partial p_{n}}}\cdot {\frac {m-f^{i}p}{gp}}}

This is linear in income m {\displaystyle m}, so the change in an individuals demand for some commodity with respect to a change in that individuals income, ∂ x n i p, m i ∂ m = ∂ g p ∂ p n g p {\displaystyle {\frac {\partial x_{n}^{i}p,m^{i}}{\partial m}}={\frac {\frac {\partial gp}{\partial p_{n}}}{gp}}}, does not depend on income, and thus Engel curves are linear.

Also, since this change does not depend on variables particular to any individual, the slopes of the Engel curves of different individuals are equal.


6. Application

Many applications of Gorman polar form are summarized in various texts and in Honohan and Nearys article. These applications include the ease of estimation of f i p {\displaystyle f^{i}p} and g p {\displaystyle gp} in certain cases. But the most important application is for the theorist of economics, in that it allows a researcher to treat a society of utility-maximizing individuals as a single individual. In other words, under these conditions a community indifference mapping is guaranteed to exist.

  • separability of goods, and in this context he developed his famous Gorman polar form Gorman s career saw him a professor at such schools as Oxford, London
  • in Polar Bears Cell. 157 4 785 794. doi: 10.1016 j.cell.2014.03.054. PMC 4089990. PMID 24813606. Gorman J 23 July 2012 Brown bears and polar bears
  • to market demand if and only if individual preferences are of the Gorman polar form or equivalently satisfy linear and parallel Engel curves Under
  • ion association has to be taken into account. Polar solutes dissolve in polar solvents, forming polar bonds or hydrogen bonds. As an example, all alcoholic
  • Marshallian demand function generated from a utility function of Gorman polar form the Engel curve is a straight line. Many Engel curves feature saturation
  • Bowdoin has over 30 varsity teams and the school mascot was selected as a polar bear in 1913 to honor Robert Peary, a Bowdoin alumnus who led the first
  • capacity utilization into modern macroeconomics. GHH preferences have Gorman form Often macroeconomic models assume that agents utility is additively
  • except for Australia, New Guinea, New Zealand, Madagascar, and the extreme polar regions. Most species live in forests or woodland habitats, although a few
  • Retrieved 2012 - 12 - 28. Dowdeswell, J.A. Benham, T.J. Gorman M.R. Burgess, D. Sharp, M.J. 2004 Form and flow of the Devon Island Ice Cap, Canadian Arctic
  • highest average elevation of all the continents. Most of Antarctica is a polar desert, with annual precipitation of 200 mm 7.9 in along the coast and
  • 2010. Gorman Bill March 2, 2010 Monday Cable Finals: Damages Rises, But Not By Much TV by the Numbers. Retrieved March 2, 2010. Gorman Bill March